
Lab 4A – Setting up uPy (v1.4) 1

Dyson School of Design Engineering, Imperial College London

DE1.3 Electronics 1

Lab 4A – Setting up MicroPython
Peter Cheung

Introduction
So far you have been using the signal generator running on the ESP32, the
oscilloscope and the multimeter to investigate electronic circuits and learn about basic
principles in electronics. From Lab 4 onwards, you will start writing code to control
electronic components using the ESP32.
The signal generator application on the ESP32 was written in C++ under Visual Studio
Code (VSC) intergrated development evironment (IDE) with PlatformIO. The SIG_GEN
application was flashed onto the Heltec ESP32 module before your parcel was sent. In
that way, the signal generator is more or less ready for us after you added the rotary
encoder for control.
For the next part of the Home Lab, you will be programming the ESP32 with a version
of Python, called MicroPython (or uPy). This choice is driven by three reasons: 1) you
are already familiar with Python from Computing 1; 2) uPy is far easier to program and
the code is shorter than using C++ or Sketch; 3) you are much more likely to write your
own code than to download someone else’s from the internet because uPy codes are
not commonly available.
Lab 4 is in two parts. This document is for part A, which is mostly procedural. By the
end of Lab 4B, you should be in a position start using the ESP32 and uPy. You will load
the uPy intepreter program onto the ESP32 and overwrite the SIG_GEN code, and take
control of the ESP32 module yourself. Although this instruction is quite long, the entire
process should take around one hour if everything works perfectly.
IMPORTANT NOTE: Lab 4A requires you to have administrator’s privilege on your
laptop computer, which is required for installing various programs and device drivers.
Further, read the instruction carefully and be patient – there are many steps and each
step must be followed precisely, otherwise it won’t work. However, the benefit is that
you will learn how to install and set up a fairly complex environment – an experience
that is beneficial in its own right. Once set up, you don’t need to do it again for
programming any EPS32 devices in the future.

Lab 4A – Setting up uPy (v1.4) 2

Sequence of Tasks to set up MicroPython environment
A flowchart showing all steps required to set up the MicroPython environment for Lab 4.

Lab 4A – Setting up uPy (v1.4) 3

Task 1 – Installing the CP2102 device driver
In Lab 1 to 3, you used the USB port on your laptop to provide power to the ESP32
module. From now on, you will also communicate with the ESP32 through the USB port
on your laptop to flash a new program onto the ESP32 and to send or receive
information to the ESP32. The mechanism relies on UART protocol of communication
via the USB interface – this is known as the USB to UART bridge. For this to work, you
need to install the CP2102 1 USB to UART Bridge VCP Driver (VCP = Virtual
Communication Port). Go to Silicon Labs download page here:

https://tinyurl.com/y5gl5fxr
Follow the instruction and install the driver for your Windows 10 or Mac OSX laptop
computer.
Next we need to check that the driver is installed properly. To do so, you must plug
your ESP32 module to the USB port of your computer with the supplied USB
cable in the instrument bag.

For Windows 10 PC
Once correctly installed, you may have to reboot your computer.
Then plug in the EPS32 module. The yellow LED should be
ON.
Run the Device Manager program and check under Ports (COM
& LPT) tab. If the CP210x driver is successfully loaded, you
should see a device under this name listed.

For Macbook
Run the Terminal program (in Applications > Utilities folder):

Enter the following command: ls /dev/tty.* (“ls” is the unix command “list directory”,
“/dev” is the folder that contains all device drivers used by your computer, “tty” stands
for teletype, the first brand of computer terminals used decades ago, but the name
stuck, “*” is just the wildcard character.)
If the driver is installed properly, you will see a file /dev/tty.SLAB_USBtoUART among
other files in this directory.

																																																								
1	CP2102	is	the	chip	on	the	ESP32	module	made	by	Silicon	Labs	that	links	between	USB	and	the	UART	interface	on	the	ESP32	
microcontroller.	

Lab 4A – Setting up uPy (v1.4) 4

Task 2 – Installing ESP tools to flash the ESP32 module
The ESP32 module in your Home Lab Kit is a Heltec wifi 32 kit, and it contains a
microcontroller chip, the ESP32, made by Espressif. The same company also made its
predecessor, the popular ESP8266, which can be found in many IoT devices such as
smart lights and smart plugs used in homes.
The EPS32 module is preloaded with a program known as a “bootloader”, which allows
users to download and flash their programs onto the ESP32 internal memory. Once
done, power can be removed, and the program will remain. Such memory that retains
its contents is called “non-volatile” memory. Your USB flash drive essentially is a type
of non-volatlie memory..
Espressif officially supports a special utility program to let users flash their ESP32 chips.
This utility, “esptool.py”, is a Python program that allows you to erase the flash memory
inside the ESP32 and over-write (or flash) your own program. Task 2 is to install this
esptool utility on your computer.

Step 1: Check your Python installation
All subsequent steps require that you have Python installed on your laptop. You can
check this by opening a Terminal window (on Mac) or a Console window (on Windows
PC), and enter the command: python3 --version (“--“ = two dashes) or
 python --version.

You need Python 3.4 or newer for the remaining of this term for Electronics 1.

Step 2: Installing the Python Install Package pip
Before you can install the esptool utility, you need to install a Python Install Package
(pip) to help you to install the esptool and other Python packages. This may sound a bit
tedious, but you will find pip is a utility that you cannot do without in many other
occasions. Its installation is therefore well worth the effort.
The easiest way to install pip is to:

1. Download get-pip.py to a folder on your computer.
(Link: https://bootstrap.pypa.io/get-pip.py)

2. Open a Terminal or Console window, and navigate to the folder containing the
file get-pip.py using the “cd” and “ls” commands

3. Run the following command: python3 get-pip.py and pip will be automatically

installed. Check the installation with command pip --version. (See my screen
log below.)

Lab 4A – Setting up uPy (v1.4) 5

Step 3: Install esptool

Now in the command window enter the command: pip install esptool. (See my
screen log below).

Now you are ready to use the esptool utility.

Lab 4A – Setting up uPy (v1.4) 6

Task 3: Erase and Flash MicroPython onto your ESP32

You are now ready to install the MicroPython (uPy) intepreter program onto your ESP32
module. Doing so will overwrite the SIG_GEN application which was preloaded on your
ESP32. This is not a problem – you won’t need the signal generator again for the rest
of the term.

Step 1: Download the uPy binary file esp32spiram.bin from the course webpage.

Step 2: Open the Terminal or Console window again and erase the ESP32 flash
memory with the command:

For Macbook

esptool.py --chip esp32 --port /dev/tty.SLAB_USBtoUART erase_flash

For Windows PC (x is the COM PORT number)

esptool.py --chip esp32 --port COMx erase_flash

Step 3: Flash uPy onto ESP32

Navigate to the folder containing the downloaded esp32spiram.bin file. Enter the
command:

For Macbook

esptool.py --chip esp32 --port /dev/tty.SLAB_USBtoUART write_flash –z 0x1000
esp32spiram.bin

For Windows PC (x is the COM PORT number)

esptool.py --chip esp32 --port COMx write_flash –z 0x1000 esp32spiram.bin

(See screen log below.)

Lab 4A – Setting up uPy (v1.4) 7

Step 4: Verify that uPy is installed correctly

For Macbook

Run the Terminal application and enter the command (baudrate is 115200):

screen /dev/tty.SLAB_USBtoUART 115200

Now the Terminal screen will be connected to the ESP32 running uPy. Type ENTER a
few times and you should see the familiar Python REPL >>>. If this fails, unplug and
plug the USB cable and try again.

For Windows PC

Download the terminal program known as
PuTTy from:

https://www.ssh.com/ssh/putty/download

Install PuTTy on your laptop and run this
program. You will have to configure PuTTY by
clicking the “serial” radial button and enter the
COM PORT (e.g. COM4) connected to the
ESP32. Also, choose the speed to be 115200.
Run PuTTy.

You should now see the Python REPL >>>
inside the PuTTy terminal window.

For both Mac and PC, your are running a terminal program to directly communicate with
uPy running on the ESP32. You can enter any valid uPy program code and these will be
executed immediately. For example, try:

print(“Hello world!”)

Lab 4A – Setting up uPy (v1.4) 8

Task 4: Install PyCharm IDE for MicroPython

If you opened Terminal on MacBook or PuTTy on PC, you must close these application
before you proceed to Task 4.
You can control the ESP32 using uPy in the interactive mode. However, this is not
practical except for testing a few simple uPy scripts. For an substantive program, you
need an Integrated Development Environment (IDE) with an Editor, a terminal program,
and an easy way to flash new files onto the ESP32.
Step 1: Sign up and install PyCharm

The best platform to use is PyCharm and as a student, you can sign up to use their
software for free. Go and visit:
https://www.jetbrains.com/community/education/#students

Sign up for a free student account. Download the full professional version. Alternatively,
you can also just download PyCharm Community Edition (not full version). Install and
run PyCharm.

Step 2: Create Project folder

Create a new project in a new folder, and call this “HomeLab4” or something suitable.
You can leave all other settings as default. PyCharm will set up the new directory at
your specified locaton with all the files that it needs.

Step 3: Set up MicroPython plugin in PyCharm

• Under the pulldown menu PyCharm, open Preferences. A window will pop up.
From the menu list on the left, select Plugins. Search from MicroPython and
click install. (See screen log below.)

• Click on Languages & Frameworks in the left menu list, and select MicroPython.

Lab 4A – Setting up uPy (v1.4) 9

• Select “Enable MicroPython Support”

• Under device type, select ESP8266 (there is no formal support for ESP32 and
ESP8266, which is the predecessor to ESP32, is close enough).

• Enter the location of the device driver under Device Path. For Macbook, this

would be /dev/tty.SLAB_USBtoUART. For PC, this would be COMx. Then click
OK.

You are now ready to use PyCharm for uPy development.

Lab 4A – Setting up uPy (v1.4) 10

Task 5: “Hello world!” inside PyCharm environment

Create a new file under HomeLab4 workspace, and name the new file “main.py”. The
first time you do this, there will be a message at the top of the window to say that
esp8266 support is required but not available. On the right, there is a link labelled
“install esp8266 support”. Click this link.
We are now in a position to run the simple “Hello World!” script inside PyCharm. To do
that, go to the top “Tools” menu and select MicroPython -> MicroPython REPL.

 A “Local” terminal window will appear in the lower part of PyCharm, and a Python
REPL should appear as shown:

If this does not work, simply unplug and plug the USB cable on the ESP32 and try
again.

The REPL you see here is NOT from your laptop. PyCharm is now communicating with
the ESP32, much like what you did at the end of Task 3. The difference is that you do
this wihtin the integrated environment of PyCharm.

You can now type the uPy script:

print(“Hello world!”)

You should see the result in the terminal window.

Lab 4A – Setting up uPy (v1.4) 11

Task 6: Explore what are included in MicroPython

Under the uPy REPL, enter:

>>> help(‘modules’)

You will see the list of included
library modules within uPy. These
are all stored on the flash memory
on the ESP32 chip.

You can also find out what is inside
any of these modules. For example,
you might want to explore one of the
most important module – “machine”.

>>> import machine
>>> help(machine)

This will print a very long list of functions, classes and attributes
defined in the “machine” module. One such item inside machine is
the PWM Class.

You can explore the methods defined within the PWM Class by doing
this:

>>> from machine import PWM
>>> help(PWM)

This immediately tells you that PWM has four methods (or functions), namely,
PWM.init(), PWM.deinit(), PWM.freq() and PWM.duty().

Description of MicroPython library modules can be found online under:
https://docs.micropython.org/en/latest/library/index.html#

However, the method shown above helps you to explore what are avaible and what the
methods are called quickly.

Now explore uPy for yourself.

Lab 4A – Setting up uPy (v1.4) 12

Task 7: Flashing the “Hello world!” program onto the ESP32

Having to type the uPy script each time you run a program is obviously not practical. It
is far better if you store your program “permanently” on the ESP32 onchip flash
memory. (Permanently here means the program will stay even if you switch power OFF,
but it is in fact not permanent because you can erase and flash another program in its
place later.)

What happens on boot up?

To do this you need to understand what happens when you switch the power ON or
press the RESET switch (lower switch under the USB socket). This process is known
as “bootstrapping” or “boot up” for short.

On powerup or reset, the system looks for a uPy script under the name “boot.py”. This
normally contains some configuration scripts and import statements. It can empty (but
must be exists).

After boot.py, ESP32 runs the uPy script “main.py”. This is where you should put your
main program code.

To run uPy script automatically, you need to create boot.py and main.py using the editor
in PyCharm, stored them locally on your computer disk (in the folder that you specify
when creating the new project), and then flash these two files to ESP32.

Step 1: Create your uPy code files
Use the editor, create boot.py and main.py as shown below and save them in your
HomeLab4 folder.

Step 2: Exit MicroPython Terminal window
If you had been communicating with ESP32 via the uPy REPL (as in Task 6), you
MUST terminate this by closing that terminal
window. This is because you need to use the
USB connection, not for terminal communication,
but to flash your program. There is only one link
(USB to UART) and the same link is used for two
purposes, but only one at a time. (See below.)

Lab 4A – Setting up uPy (v1.4) 13

Step 3: Edit Configuration
To prepare flashing boot.py and main.py to the ESP32,
you need to click the “Add Configuration” button and
select MicroPython > Flash to set up flashing the
ESP32. There after, you can edit the configuration by
selecting ICON: Edit Configurations ….:

A window will pop up, select the program file you want to flash and click OK.

For Windows 10 users, you must use the ‘+’ sign in the top left corner
of the dialogue box (See screenshot below.)

Step 4: Flash the program
Now click the run icon (green arrow) . You will see a RUN message window appears
and report that uploading is complete.

Now do the same for main.py.

Step 5: Run the “Hello world!” program
Go back to Tools > MicroPython > MicroPython REPL menu, and you will start
communicating with the ESP32 via the USB cable again. Type CTRL+D to run your
program (this is called soft reboot).

Lab 4A – Setting up uPy (v1.4) 14

Task 8: “Hello world!” on the OLED display

This final task is to show you how to display the “Hello world!” message on the buildin
OLED display.

Step 1: Download and flash the OLED driver and font files

Go to the course webpage and down two files: oled.py.zip and font.py.zip to your
project folder. Unzip them.

Use Edit Configurations … , flash these two files to the ESP32 non-volatile memory.

These two files provide an easy method to display text and draw diagrams on the OLED
display.

The file oled.py is known as driver because shield you from needing to know about
details of the OLED hardware.

Step 2: Create modfiy main.py and create a new uPy script hello.py as shown below.

Step 3: Flash them to the ESP32

Step 4: Now press the RESET button the ESP32 module (button below the USB
socket) or CTRL-D in the uPy REPL terminal. You should see this on the OLED
display:

Now unplug and re-plug the USB cable. Press the RESET button and you will see that
the program will run again without flashing or interacting with PyCharm. You are now
ready to do Lab 4 Part B.

Lab 4A – Setting up uPy (v1.4) 15

