Dyson School of Design Engineering, Imperial College London
DE1.3 Electronics 1

Lab 4A — Setting up MicroPython
Peter Cheung

Introduction

So far you have been using the signal generator running on the ESP32, the
oscilloscope and the multimeter to investigate electronic circuits and learn about basic
principles in electronics. From Lab 4 onwards, you will start writing code to control
electronic components using the ESP32.

The signal generator application on the ESP32 was written in C++ under Visual Studio
Code (VSC) intergrated development evironment (IDE) with PlatformlO. The SIG_GEN
application was flashed onto the Heltec ESP32 module before your parcel was sent. In
that way, the signal generator is more or less ready for us after you added the rotary
encoder for control.

For the next part of the Home Lab, you will be programming the ESP32 with a version
of Python, called MicroPython (or uPy). This choice is driven by three reasons: 1) you
are already familiar with Python from Computing 1; 2) uPy is far easier to program and
the code is shorter than using C++ or Sketch; 3) you are much more likely to write your
own code than to download someone else’s from the internet because uPy codes are
not commonly available.

Lab 4 is in two parts. This document is for part A, which is mostly procedural. By the
end of Lab 4B, you should be in a position start using the ESP32 and uPy. You will load
the uPy intepreter program onto the ESP32 and overwrite the SIG_GEN code, and take
control of the ESP32 module yourself. Although this instruction is quite long, the entire
process should take around one hour if everything works perfectly.

IMPORTANT NOTE: Lab 4A requires you to have administrator’s privilege on your
laptop computer, which is required for installing various programs and device drivers.
Further, read the instruction carefully and be patient — there are many steps and each
step must be followed precisely, otherwise it won’'t work. However, the benefit is that
you will learn how to install and set up a fairly complex environment — an experience
that is beneficial in its own right. Once set up, you don’t need to do it again for
programming any EPS32 devices in the future.

Lab 4A — Setting up uPy (v1.4) 1

Sequence of Tasks to set up MicroPython environment

A flowchart showing all steps required to set up the MicroPython environment for Lab 4.

Task 1 Task 3 Tasks5 & 6
Install u u
CP2102
drive driver Download Run “Hello
uPy for world!” inside
Ur ESP32 PyCharm
Connect R
ESP32 to
Laptop Erase and
g flash uPy to Explore uPy
ESP32 using help()
Check driver
properly
installed Tasks 7
Verify that uPy is
Task 2 mstalletld = Flashing
correctly “Hello world!”
Check Python onto ESP32
3.4 or later
available
y Task 4
Install
Download PyCharm
get-pip.py IDE Display on
and install pip g OLED
‘H’ Install
MicroPython
|nSta|| plug-in for
esptool PyCharm
T [1 [

Lab 4A — Setting up uPy (v1.4)

Task 1 — Installing the CP2102 device driver

In Lab 1 to 3, you used the USB port on your laptop to provide power to the ESP32
module. From now on, you will also communicate with the ESP32 through the USB port
on your laptop to flash a new program onto the ESP32 and to send or receive
information to the ESP32. The mechanism relies on UART protocol of communication
via the USB interface — this is known as the USB to UART bridge. For this to work, you
need to install the CP2102"' USB to UART Bridge VCP Driver (VCP = Virtual
Communication Port). Go to Silicon Labs download page here:

https://tinyurl.com/y5gl5fxr

Follow the instruction and install the driver for your Windows 10 or Mac OSX laptop
computer.

Next we need to check that the driver is installed properly. To do so, you must plug
your ESP32 module to the USB port of your computer with the supplied USB
cable in the instrument bag.

& Device Manager

For Windows 10 PC File Action View Help

e mHEm

Once correctly installed, you may have to reboot your computer. "~ & secssoi

i Audio inputs and outputs

Then plug in the EPS32 module. The yellow LED should be = Computer

wa Disk drives
ON . @ Display adaptors
w DVD/CD-ROM drives
Run the Device Manager program and check under Ports (COM P tman e Deves
& LPT) tab. If the CP210x driver is successfully loaded, you iceandotnerpining devices
. . . onitors
should see a device under this name listed. & Network adspters

v i@ Ports (COM & LPT)
Communications Port (COM1)

§ Intel(R) Active Management Technology - SOL (COM3)

For Macbook
Run the Terminal program & Terminal (in Applications > Utilities folder):

& Macintosh HD > [Applications > [¥] Utilities

Enter the following command: 1s /dev/tty.* (“Is” is the unix command “list directory”,
“ldev” is the folder that contains all device drivers used by your computer, “tty” stands
for teletype, the first brand of computer terminals used decades ago, but the name
stuck, “*” is just the wildcard character.)

If the driver is installed properly, you will see a file /dev/tty.SLAB_USBtoUART among
other files in this directory.

[] [] 7 peterc — -bash — 80x24

Last login: Wed May 13 18:32:19 on console
Peters-MacBook-Pro:~ peterc$ ls /dev/tty.*
/dev/tty.Bluetooth-Incoming-Port /dev/tty.SLAB_USBtoUART

/dev/tty.PetersnewiPhone6-Wirele /dev/tty.usbmodem142111
Peters-MacBook-Pro:~ peterc$

1 ¢cp2102is the chip on the ESP32 module made by Silicon Labs that links between USB and the UART interface on the ESP32
microcontroller.

Lab 4A — Setting up uPy (v1.4) 3

Task 2 — Installing ESP tools to flash the ESP32 module

The ESP32 module in your Home Lab Kit is a Heltec wifi 32 kit, and it contains a
microcontroller chip, the ESP32, made by Espressif. The same company also made its
predecessor, the popular ESP8266, which can be found in many loT devices such as
smart lights and smart plugs used in homes.

The EPS32 module is preloaded with a program known as a “bootloader”, which allows
users to download and flash their programs onto the ESP32 internal memory. Once
done, power can be removed, and the program will remain. Such memory that retains
its contents is called “non-volatile” memory. Your USB flash drive essentially is a type
of non-volatlie memory..

Espressif officially supports a special utility program to let users flash their ESP32 chips.
This utility, “esptool.py”, is @ Python program that allows you to erase the flash memory
inside the ESP32 and over-write (or flash) your own program. Task 2 is to install this
esptool utility on your computer.

Step 1: Check your Python installation

All subsequent steps require that you have Python installed on your laptop. You can
check this by opening a Terminal window (on Mac) or a Console window (on Windows
PC), and enter the command: python3 --version (“--“ = two dashes) or

python --version.

(Lab4) Peters-MacBook-Pro:Lab4 peterc$ python3 --version

Python 3.8.1

You need Python 3.4 or newer for the remaining of this term for Electronics 1.

Step 2: Installing the Python Install Package pip

Before you can install the esptool utility, you need to install a Python Install Package
(pip) to help you to install the esptool and other Python packages. This may sound a bit
tedious, but you will find pip is a utility that you cannot do without in many other
occasions. Its installation is therefore well worth the effort.

The easiest way to install pip is to:
1. Download get-pip.py to a folder on your computer.

(Link: https://bootstrap.pypa.io/get-pip.py)

2. Open a Terminal or Console window, and navigate to the folder containing the
file get-pip.py using the “cd” and “Is” commands

Peters-MacBook-Pro:~ peterc$ cd Downloads
Peters-MacBook-Pro:Downloads peterc$ ls get-pip.py

get-pip.py

3. Run the following command: python3 get-pip.py and pip will be automatically
installed. Check the installation with command pip --version. (See my screen
log below.)

Peters-MacBook-Pro:Downloads peterc$ python3 get-pip.py
Collecting pip
Downloading pip-20.1.1-py2.py3-none-any.whl (1.5 MB)
| I 1.5 MB 1.9 MB/s
Collecting wheel

Using cached wheel-0.34.2-py2.py3-none-any.whl (26 kB)
Installing collected packages: pip, wheel
Attempting uninstall: pip
Found existing installation: pip 19.2.3
Uninstalling pip-19.2.3:
Successfully uninstalled pip-19.2.3
Successfully installed pip-20.1.1 wheel-0.34.2
Peters-MacBook-Pro:Downloads peterc$ pip -V
pip 20.1.1 from /Library/Frameworks/Python.framework/Versions/3.8/1ib/python3.8/site- 4

Lab 4A — Settlng up UPy (packages/pip (python 3.8)

Step 3: Install esptool

Now in the command window enter the command: pip install esptool. (See my
screen log below).

Peters-MacBook-Pro:Downloads peterc$ pip install esptool
Collecting esptool

Downloading esptool-2.8.tar.gz (84 kB)

| I | 84 kB 1.9 MB/s

Requirement already satisfied: pyserial==3.0 in /Library/Frameworks/Python.framework/Versio
ns/3.8/1ib/python3.8/site-packages (from esptool) (3.4)
Collecting pyaes

Downloading pyaes-1.6.1.tar.gz (28 kB)
Collecting ecdsa

Downloading ecdsa-0.15-py2.py3-none-any.whl (100 kB)

| I | 100 kB 4.7 MB/s

Collecting six>==1.9.0

Downloading six-1.15.0-py2.py3-none-any.whl (10 kB)
Building wheels for collected packages: esptool, pyaes

Building wheel for esptool (setup.py) ... done

Created wheel for esptool: filename=esptool-2.8-py3-none-any.whl size=142114 sha256=94079
6abb69409203fa9578d53fc@1f83db97f9aecf952dbcc89e1b8b848b3bc

Stored in directory: /Users/peterc/Library/Caches/pip/wheels/4a/4c/c7/aa45baeba596ab@e9d6
24a32e3f5680db5aed6773aelffa5ed

Building wheel for pyaes (setup.py) ... done

Created wheel for pyaes: filename=pyaes-1.6.1-py3-none-any.whl size=26345 sha256=elcdabde
62adbarb1117b8@76b816c1b41222270c307374c01a393978417eda2

Stored in directory: /Users/peterc/Library/Caches/pip/wheels/aa/ca/9¢c/8a3c00512585c703edc
457db81c066b9609d76758c74f72ack
Successfully built esptool pyaes
Installing collected packages: pyaes, six, ecdsa, esptool
Successfully installed ecdsa-©.15 esptool-2.8 pyaes-1.6.1 six-1.15.0

Now you are ready to use the esptool utility.

Lab 4A — Setting up uPy (v1.4) 5

Task 3: Erase and Flash MicroPython onto your ESP32

You are now ready to install the MicroPython (uPy) intepreter program onto your ESP32
module. Doing so will overwrite the SIG_GEN application which was preloaded on your
ESP32. This is not a problem — you won’t need the signal generator again for the rest
of the term.

Step 1: Download the uPy binary file esp32spiram.bin from the course webpage.

Step 2: Open the Terminal or Console window again and erase the ESP32 flash
memory with the command:

For Macbook
esptool.py --chip esp32 --port /dev/tty.SLAB USBtoUART erase flash
For Windows PC (x is the COM PORT number)

esptool.py --chip esp32 --port COMx erase_ flash

Peters-MacBook-Pro:Downloads peterc$ esptool.py --chip esp32 --port /dev/tty.SLAB_USBtoUART
erase_flash

esptool.py v2.8

Serial port /dev/tty.SLAB_USBtoUART
Connecting. . o
Chip is ESP32DewDQ6 (revision 1)

Features: WiFi, BT, Dual Core, 240MHz, VRef calibration in efuse, Coding Scheme None
Crystal is 26MHz

MAC: 24:6f:28:77:06:d4

Uploading stub...

Running stub...

Stub running...

Erasing flash (this may take a while)...
Chip erase completed successfully in 14.4s
Hard resetting via RTS pin...

Step 3: Flash uPy onto ESP32

Navigate to the folder containing the downloaded esp32spiram.bin file. Enter the
command:

For Macbook

esptool.py --chip esp32 --port /dev/tty.SLAB USBtoUART write flash —z 0x1000
esp32spiram.bin

For Windows PC (x is the COM PORT number)

esptool.py --chip esp32 --port COMx write flash —z 0x1000 esp32spiram.bin

(See screen log below.)

Lab 4A — Setting up uPy (v1.4) 6

Peters-MacBook-Pro:~ peterc$ cd Downloads

Peters-MacBook-Pro:Downloads peterc$ esptool.py --chip esp32 --port /dev/tty.SLAB_USBtoUART
write_flash -z 0x1000 esp32spiram.bin

esptool.py v2.8

Serial port /dev/tty.SLAB_USBtoUART

Connecting........ _

Chip is ESP32DOWDQ6 (revision 1)

Features: WiFi, BT, Dual Core, 240MHz, VRef calibration in efuse, Coding Scheme None
Crystal is 26MHz

MAC: 24:6f:28:77:06:d4

Uploading stub...

Running stub...

Stub running...

Configuring flash size...

Auto-detected Flash size: 8MB

Flash params set to 0x©230

Compressed 1510800 bytes to 932839...

Wrote 1510800 bytes (932839 compressed) at 0x00001000 in 82.6 seconds (effective 146.3 kbit
/S)...

Hash of data verified.

Leaving...
Hard resetting via RTS pin...

Step 4: Verify that uPy is installed correctly

For Macbook

Run the Terminal application and enter the command (baudrate is 115200):
screen /dev/tty.SLAB USBtoUART 115200

Now the Terminal screen will be connected to the ESP32 running uPy. Type ENTER a
few times and you should see the familiar Python REPL >>>. If this fails, unplug and
plug the USB cable and try again.

For Windows PC

#R PuUTTY Configuration ? X
Download the terminal program known as |&er — :

—J- Session Basic options for your PuTTY session
PUTTy from: : - Foglging Specify the destination you want to connect to

T ennKlr;)a'boa d Host Name (or IP address) Port
https://www.ssh.com/ssh/putty/download Bel [|[22

Features CCLSnnection (%pe: o ® o
. =) Window Raw Telnet Rlogin SSH Serial
Install PuTTy on your laptop and run this Appearance ,
. . Behaviour Load, save or delete a stored session
program. You will have to configure PuTTY by gyl Saved Sessions
clicking the “serial” radial button and enter the Sclecin l |
COM PORT (e.g. COM4) connected to the || . comecion Defouk Setings Load
ESP32. Also, choose the speed to be 115200. E;*:y Save
Run PuTTy. Telnet Delete
Rlogin
+- SSH
Yog should now see the .Python REPL >>> Serial FR
inside the PuTTy terminal window. Obwap ONever @ Oy on clon o
About Help Open Cancel

For both Mac and PC, your are running a terminal program to directly communicate with
uPy running on the ESP32. You can enter any valid uPy program code and these will be
executed immediately. For example, try:

print(“Hello world!")

Lab 4A — Setting up uPy (v1.4) 7

Task 4: Install PyCharm IDE for MicroPython

If you opened Terminal on MacBook or PuTTy on PC, you must close these application
before you proceed to Task 4.

You can control the ESP32 using uPy in the interactive mode. However, this is not
practical except for testing a few simple uPy scripts. For an substantive program, you
need an Integrated Development Environment (IDE) with an Editor, a terminal program,
and an easy way to flash new files onto the ESP32.

Step 1: Sign up and install PyCharm
The best platform to use is PyCharm and as a student, you can sign up to use their

software for free. Go and visit:
https://www.jetbrains.com/community/education/#students

Sign up for a free student account. Download the full professional version. Alternatively,
you can also just download PyCharm Community Edition (not full version). Install and
run PyCharm.

Step 2: Create Project folder

Create a new project in a new folder, and call this “HomelLab4” or something suitable.
You can leave all other settings as default. PyCharm will set up the new directory at
your specified locaton with all the files that it needs.

Step 3: Set up MicroPython plugin in PyCharm

* Under the pulldown menu PyCharm, open preferences. A window will pop up.
From the menu list on the left, select p1ugins. Search from MicroPython and
click install. (See screen log below.)

e _0 Preferences

Plugins

¥ Appearance & Behavior MicroPython
Appearance
Menus and Toolbars

» System Settings AL
File Colors
Scopes
Notifications
Quick Lists
Path Variables

Keymap
» Editor

Plugins

> Version Control

» Project: Lab4

» Build, Execution, Deployment
» Languages & Frameworks

» Tools

* Click on Languages & Frameworks in the left menu list, and select MicroPython.

Lab 4A — Setting up uPy (v1.4) 8

e Select “Enable MicroPython Support”

* Under device type, select ESP8266 (there is no formal support for ESP32 and
ESP8266, which is the predecessor to ESP32, is close enough).

¢ Enter the location of the device driver under Device Path. For Macbook, this
would be /dev/tty.sr.aB usBtoUART. For PC, this would be COMx. Then click
OK.

e O Preferences

Languages & Frameworks > MicroPython

Appearance & Behavior v| Enable MicroPython support

Keymap Device type: | ESP8266 ~
Editor
Device path: | /dev/tty.SLAB_USBtoUART

Plugins
Version Control
Project: Lab4
Build, Execution, Deployment
Languages & Frameworks
» Schemas and DTDs

Markdown

MicroPython

ReStructured text

Tools

You are now ready to use PyCharm for uPy development.

Lab 4A — Setting up uPy (v1.4)

Detect

Task 5: “Hello world!” inside PyCharm environment

Create a new file under HomelLab4 workspace, and name the new file “main.py”. The
first time you do this, there will be a message at the top of the window to say that
esp8266 support is required but not available. On the right, there is a link labelled
“install esp8266 support”. Click this link.

We are now in a position to run the simple “Hello World!” script inside PyCharm. To do
that, go to the top “roo1s” menu and select MicropPython -> MicroPython REPL.

@ PyCharm File Edit View Navigate Code Refactor Run VCS Window Help

A | > Tasks & Contexts > & learn.adafruit.com

. < blog.jetbrains.com
[SRUSS——] —
IDE Scripting Console
[} Flash ~ b : 183%

Lab4d | g main.py
Create Command-line Launcher...

Project v D =
1 Lab4
i main.py Stack Trace or Thread Dump...
» liln External Libraries # Python or Debug Console
¥® Scratches and Consoles Sync Python Requirements...
~ Create setup.py
Run setup.py Task...
Sphinx Quickstart
[L1] MicroPython > [L1] MicroPython REPL

XML Actions >

I 1: Project
|

2= 7: Structure

Remove All Files from MicroPython Device

A “Local” terminal window will appear in the lower part of PyCharm, and a Python
REPL should appear as shown:

Terminal: Local Local (2) +

Device path /dev/tty.SLAB_USBtoUART
Quit: Ctrl+] | Stop program: Ctrl+C | Reset: Ctrl+D
Type 'help()' (without the quotes) then press ENTER.

>>> I

= 6: TODO 4 Terminal @ Python Console 4) Event Log

P
-
s
&
fid
i
*

I} Packages installed successfully: Installed packages: 'pyserial>=3.3,<4.0', 'docopt>=0.6.2,<0.7', 'adafruit-ampy>=1.0.5,<1.1" (7 minutes ago) Python 3.8 (Lab4)

If this does not work, simply unplug and plug the USB cable on the ESP32 and try
again.

The REPL you see here is NOT from your laptop. PyCharm is now communicating with
the ESP32, much like what you did at the end of Task 3. The difference is that you do
this wihtin the integrated environment of PyCharm.

You can now type the uPy script:

print(“Hello world!")

You should see the result in the terminal window.

Lab 4A — Setting up uPy (v1.4) 10

Task 6: Explore what are included in MicroPython

>>> help('modules')
Under the uPy REPL, enter: —main__ o
_boot inisetup
_onewire
_thread
_vasyncio

machine
math
micropython

>>> help(‘modules’)

You will see the list of included
library modules within uPy. These
are all stored on the flash memory
on the ESP32 chip.

_webrepl neopixel
apaleé

btree

network
ntptime
builtins onewire
cmath
dht
ds18x28

esp

sys

You can also find out what is inside

any of these modules. For example,
you might want to explore one of the
most important module — “machine”.

varray
vasyncio/__init__
vasyncio/core

esp32 vasyncio/event
flashbdev

framebuf

vasyncio/funcs

. . vasyncio/lock
>>> import machine

X Plus any modules on the filesystem
>>> help(machine)
This will print a very long list of functions, classes and attributes
defined in the “machine” module. One such item inside machine is
the PWM Class.

You can explore the methods defined within the PWM Class by doing
this:

>>> from machine import PWM

>>> help(PWM)
>>> from machine import PWM
>>> help(PWM)
object <class 'PWM'> is of type type

init -- <function>

deinit -- <function>

freq -- <function>

duty -- <function>

This immediately tells you that PWM has four methods (or functions),
PWM.init(), PWM.deinit(), PWM.freq() and PWM.duty().

vasyncio/stream

vbinascii
ubluetooth
ucollections
vcryptolib
uctypes
verrno
uvhashlib
uvhashlib
uheapq

vio

ujson
umqtt/robust
umgtt/simple
uos

upip

ADC
DAC
I2C
PWM
RTC
SPI

namely,

Description of MicroPython library modules can be found online under:

https://docs.micropython.org/en/latest/library/index.html#

<class
<class
<class
<class
<class

<class
UART -- <class

upip_utarfile
upysh

urandom

ure

urequests
uselect
usocket

ussl

ustruct

vtime

utimeq
uwebsocket
vzlib

webrepl
webrepl_setup
websocket_helper

'ADC'>
'DAC'>
'I2C'>
'PWM'>
'RTC'>
'SoftSPI'>
'UART'>

However, the method shown above helps you to explore what are avaible and what the

methods are called quickly.

Now explore uPy for yourself.

Lab 4A — Setting up uPy (v1.4)

11

Task 7: Flashing the “Hello world!” program onto the ESP32

Having to type the uPy script each time you run a program is obviously not practical. It
is far better if you store your program “permanently” on the ESP32 onchip flash
memory. (Permanently here means the program will stay even if you switch power OFF,
but it is in fact not permanent because you can erase and flash another program in its
place later.)

What happens on boot up?

To do this you need to understand what happens when you switch the power ON or
press the RESET switch (lower switch under the USB socket). This process is known
as “bootstrapping’ or “boot up” for short.

On powerup or reset, the system looks for a uPy script under the name “boot.py”. This
normally contains some configuration scripts and import statements. It can empty (but
must be exists).

After boot.py, ESP32 runs the uPy script “main.py”. This is where you should put your
main program code.

To run uPy script automatically, you need to create boot.py and main.py using the editor
in PyCharm, stored them locally on your computer disk (in the folder that you specify
when creating the new project), and then flash these two files to ESP32.

Step 1: Create your uPy code files

Use the editor, create boot.py and main.py as shown below and save them in your
HomeLab4 folder.

e main.py e root.py

e main.py I root.py

Step 2: Exit MicroPython Terminal window

If you had been communicating with ESP32 via the uPy REPL (as in Task 6), you
MUST terminate this by closing that terminal
window. This is because you need to use the Terminal: Local Click to close
USB connection, not for terminal communication, [REEECERE RSN ERIEL TSIy

but to flash your program. There is only one link NEEEAEEEE B EEECURLEE DL BN S B L Rt
(USB to UART) and the same link is used for two SRACEEUEIIORNCEENER L TIE LS IR EL I REEE S = S
purposes, but only one at a time. (See below.)

il 55>

Lab 4A — Setting up uPy (v1.4) 12

Step 3: Edit Configuration [[1} Flash ~

To prepare flashing boot .py and main.py to the ESP32, Edit Configurations...
you need to click the “add Configuration” button and
select MicroPython > Flash to set up flashing the [L1] Flash
ESP32. There after, you can edit the configuration by

selecting ICON: Edit configurations ...:

A window will pop up, select the program file you want to flash and click OK.

Run/Debug Configurations

Name: Flash boot.py Allow parallel run v| Store as project file 8

Path: | /Users/peterc/PycharmProjects/Lab4/boot.py

For Windows 10 users, you must use the ‘+’ sign in the top left corner
of the dialogue box (See screenshot below.)

Step 4: Flash the program

Now click the run icon (green arrow) B You will see a RUN message window appears
and report that uploading is complete.

m Flash root.py
/Users/peterc/Documents/Lab4/bin/python "/Users/peterc/L

Now do the same for main.py.

Step 5: Run the “Hello world!” program

Go back to Tools > MicroPython > MicroPython REPL menu, and you will start
communicating with the ESP32 via the USB cable again. Type cTrL+D to run your
program (this is called soft reboot).

MPY: soft reboot

Running program on ESP32: @ Program output

HQLIO \'JOPld! é——
MicroPython v1.12-326-g8fff8bBac on 2020-84-01; ESP32 module (spiram) with ESP32

Type "help()" for more information.

Lab 4A — Setting up uPy (v1.4) 13

Task 8: “Hello world!” on the OLED display

This final task is to show you how to display the “Hello world!” message on the buildin
OLED display.

Step 1: Download and flash the OLED driver and font files

Go to the course webpage and down two files: oled.py.zip and font.py.zip t0 your
project folder. Unzip them.

Use Edit Configurations .. , flash these two files to the ESP32 non-volatile memory.

These two files provide an easy method to display text and draw diagrams on the OLED
display.

The file oled.py is known as driver because shield you from needing to know about
details of the OLED hardware.

Step 2: Create modfiy main.py and create a new uPy script hello.py as shown below.

m - ™
e main.py Fe hello.py

execfile(

oled OLED

time, random
= OLED()

.poweron()
.init_display()

.draw_text(

.display()

Step 3: Flash them to the ESP32

Step 4: Now press the RESET button the ESP32 module (button below the USB
socket) or CTRL-D in the uPy REPL terminal. You should see this on the OLED
display:

feagqqaaqaqaqa

Now unplug and re-plug the USB cable. Press the RESET button and you will see that
the program will run again without flashing or interacting with PyCharm. You are now
ready to do Lab 4 Part B.

Lab 4A — Setting up uPy (v1.4) 14

Lab 4A — Setting up uPy (v1.4)

15

